Воробьева И. Б.

Подходы и методы при геоэкологической оценки территорий

Институт географии им. В.Б. Сочавы СО РАН, г. Иркутск e-mail: irene@irgs.irk.ru

Аннотация. В статье рассмотрены подходы и методы изучения геоэкотонов при геоэкологической оценки территорий. С использованием географо-экологического подхода разработана методика оценки экологического состояния окружающей среды урбанизированных территорий. Проведены экологогогогомические исследования геоэкотона: снег на льду — лед — подледная вода на акватории оз. Байкал.

Ключевые слова: геоэкотон, ландшафтный подход, динамический подход, географо-экологический подход.

Введение

В результате коренной перестройки территориального и экономического развития России меняются и приоритеты развития регионов. В настоящее время изменилась структура производства, численность и занятость населения, что приводит к возникновению антропогенной среды, которая теснейшим образом связаны с интенсивным использованием природной среды. Экономическая ситуация продолжает усугублять экологическую, острота сложившихся негативных тенденций нарастает. Среди долговременных негативных тенденций, сложившихся в прошлом, наиболее неблагоприятное воздействие на состояние окружающей среды оказывают: экстенсивное развитие экономики, сопровождающееся одноцелевым использованием природных ресурсов, деформированная структура народного хозяйства с доминированием природоэксплуатирующих производств, монополизм государственной собственности на природные ресурсы и средства производства, что особенно проявляется в восточных регионах России. Технический прогресс породил представление, что человек, «покоряя природу», освобождается от ее влияния. Однако воздействие человека на природу следует рассматривать как природный процесс, в котором человек выступает как внешний фактор.

Комплексная оценка территории должна учитывать особенности и динамику природных компонентов, их взаимосвязи. При этом важнейшей задачей изучения природной среды является выявление пространственной структуры распределения очагов загрязнения, выявление источников загрязнений, размеров зон их влияния и прогнозирование последствий воздействия. Геоэкологическая оценка территории отражает последствия сложного взаимодействия природных, технических и социальных сред. Геоэкологические исследования имеют приоритетное значение, поскольку конечным звеном миграции вредных веществ является человек.

Современный этап исследования геоэкологичечких проблем характеризуется практически тотальной антропогенизацией, уменьшением доли природных систем и их повсеместной экотонизацией. Недостаточная изученность геоэкотонов требует больше информации об их свойствах, функциях, закономерностях формирования под влиянием природных и антропогенных факторов для мониторинга и управления переходными зонами.

Цель работы – предложить подходы и методы исследований геоэкотонов, для оценки геоэкологического состояние природных и урбанизированных территорий.

Материалы, методы, подходы

Анализ изучения организации геоэкотонов в физической географии показывает, что к настоящему времени сформулированы основные понятия, определена иерархия объектов, найдены критерии выделения геосистем в пределах преобладающего положения. При этом границы рассматриваются как вторичные по отношению к природно-территориальным образованиям, выполняющие функции их разграничения или ограничения. Определение физико-географической границы « как линии или переходной полосы, при пересечении которой происходит существенное изменение природных условий» [1], т.е. ее можно принимать и как условную линию, и как полосу, зону. Проблема пограничности и граничности систем, их выявления, определения места и роли в организации геопространства не решена однозначно и остается дискуссионной и актуальной [2,3]. В середине прошлого века вопрос о границах рассматривался в основном в рамках задач районирования [Н.А. Солнцев, В.Б. Сочава, А.А. Крауклис, А.Г. Исаченко, Е.Г. Нечаева]. На ландшафтных картах границы показываются как линейные объекты без свойств и структуры.

Однако многие исследователи отмечают, что в ландшафтной пространственной организации выявляются образования, которые нельзя отнести к ядрам типичности, так как они не отвечают принципу однородности. Для такого рода объектов В.Б. Сочава ввел понятие «экотон» и определил

его как «переходная полоса между двумя регионами или двумя выделами геомеров» [4]. Изучение функционирования и взаимодействия природных систем привлекает внимание к граничным системам, которые играют активную роль в трансформации вещественных и энергетических потоков, усиливая, ослабляя, изменяя их направление. Явление пограничности отмечали в своих работах Д.Л. Арманд, Э. Нееф, В.Б. Сочава, А.А. Крауклис, И.И. Мамай, К.Н. Дьяконов, Ф.Н. Мильков, В.С. Преображенский, А.Ю. Ретеюм, Д.И. Люри и др. В дальнейшем была выявлена проблема влияния антропогенных объектов (городов, технических сооружений и т.п.) на окружающую среду и новых граничных образований. Появляются специальные направленные на изучение зон воздействия промышленных предприятий и городских поселений [А.В. Дончева, Л.К. Казаков, И.А. Авессаломова, М.А. Глазовская, М.Н. Петрушина, А.В. Хорошев, В.Н. Башкин и др.]. Конец прошлого века был отмечен усилением интереса географов к проблемам экотонов и экотонизации. Это связано с большим разнообразием природных геоэкотонов, приоритетом в природоохранных мероприятиях, увеличением наметившимся антропогенных геоэкотонов, с быстрым развитием в них деструктивных процессов, локальных экологических кризисов и необходимостью управлять ими. Важный вклад в области развития теории экотонов был сделан В.С. Залетаевым [5]. Выявлены основные принципы их структурнофункциональной организации, обеспечивающей устойчивое развитие, разработана классификация. В работах Ю.П. Зайцева, Н.М. Новиковой, Т.В. Дикаревой, В.Л. Каганского, В.Е. Шувалова, Э.Г. Коломыца, Т.В. Бобра граничные системы, геоэкотоны рассматриваются как особый объект геопространства и самостоятельный объект изучения.

На современном этапе происходит расширение масштабов антропогенного влияния на природную среду, внедрение в ландшафт антропогенных (технических) объектов, формирующих новые ландшафтные территории воздействий, на которых большую роль начинают играть не только социально-экономические закономерности природные. но и пространственно-временной дифференциации и появлению новых границ антропогенного и природно-антропогенного происхождения. В свою очередь это сопровождается появлением новых природно-антропогенных и антропогенных граничных геосистем - геоэкотонов разных пространственных масштабов, со специфическими свойствами, структурой и устойчивостью. Многие авторы отмечают, что «геоэкотон» - это объективная реальность, которая имеет свою специфичность и все увеличивающееся количество. Следовательно, геоэкотон – можно представить, как сложную пространственновременную систему, формирующаяся на контакте разных природных сред и зон (вода – суша; вода – лед; горы – равнины; лес – тайга). Нарушение естественной пространственно-временной структуры геосистем под действием, как природных, так и антропогенных факторов (освоение подземных ресурсов, урбанизированные территории, промышленные зоны и др.) также способствуют расширению площадей геоэкотонов. Активизация в исследовании геоэкотонов связана с проблемой всеобщей антропогенизации и уменьшением доли природных геосистем, а так же глобального изменения климата и необходимостью прогнозирования и моделирования возможных последствий. Геоэкотоны как наиболее динамичные геосистемы являются индикаторами будущих изменений в структуре и свойствах геопространства.

Выявление, изучение и картографирование геоэкотонов предполагает использование различных методов: сравнительно-географического, ландшафтно-геохимического, геоботанического, почвеннобиохимического, картографического, метода сопряженного анализа данных и их статистической обработки.

Ландшафтный подход является наиболее соответствующим задаче комплексного анализа и оценки природных условий территорий, поскольку учитывает как фоновые (природные) состояния геосистем, так и их антропогенные трансформации. Сущность ландшафтного подхода заключается в рассмотрении территории как совокупности природно-территориальных комплексов. Ландшафтный подход подразумевает анализ ландшафтной структуры территории и ее динамики, оценку устойчивости к различным видам воздействия, а также выбор приоритетных направлений использования и развития разных типов природных комплексов. Методика применения рассматриваемого подхода включает составление ландшафтной карты и последующий анализ территории на основе ландшафтной дифференциации. Ландшафтная карта служит базовой для создания ряда тематических карт и схем, отражающих современное состояние и тенденции развития природных процессов и явлений внутри региона. При ее создании выявляются геоэкотоны, типичные и уникальные, закладывается база для оценки инженерно-строительных условий, ландшафтнорекреационных ресурсов, разработки природно-экологического каркаса территории.

Ведущую роль в геоэкологических исследованиях играет динамический подход — изучение природной среды как открытой подвижной системы, подчиняющейся в своем развитии определенным закономерностям. Такой подход включает: 1) определение комплекса процессов возникающих как в результате спонтанного развития природы, так и хозяйственной деятельности; 2) изучение и картографирование всех процессов; 3) установление и анализ факторов (источников) развития неблагоприятных процессов, проведение их экологической паспортизации; 4) определение характерных черт процессов (пространственного развития, интенсивности, продолжительности проявления и т.д.); 5) изучение воздействия процессов на компоненты и природную среду в целом; 6)

прогнозирование тенденции развития процессов и их воздействия на природную среду [6]. Это необходимо для оценки геоэкологической обстановки и разработки плана защиты природной среды от неблагоприятных процессов и предупреждения их возникновения.

В.С. Преображенский и Т.Д. Александрова [7] утверждают — необходимо использовать совокупность географического и экологического подходов, т.е. геоэкологического, при изучении различных геосистем с целью анализа возможных изменений природы и их последствий. Такой подход способствует системному рассмотрению как биологических, так и абиотических явлений, процессов и объектов и позволяет территориально дифференцировать мероприятия, их нормы и правила, строго связывая их с конкретной геоэкологической обстановкой. Географо-экологический подход позволяет в равной степени учитывать все взаимодействующие компоненты и объекты, как в пределах системы, так и между. При решении конкретных геоэкологических задач одному из направлений отдается предпочтение. Задачи геоэкологических исследований: рациональное природопользование, экономное использование природных ресурсов и предотвращение (ослабление) возможных отрицательных последствий техногенеза; оценка геоэкологического состояния территорий и геоэкологическое картографирование [8]; обеспечение экологического равновесия между компонентами системы природа—население—хозяйство и обоснование допустимых уровней техногенной нагрузки на природные компоненты; информационное обеспечение.

Результаты и обсуждение

На основании применения совокупного географического и экологического подходов, разработана методика оценки экологического состояния окружающей среды урбанизированных территорий, которая базируется на системном анализе и синтезе знаний о природных, социальных и экономических условиях. При этом было подтверждено, что как бы ни была сильно изменена природная основа, в какой бы степени ни была насыщена результатами человеческого труда, она остается частью природы. Природной системой, в которой продолжают действовать природные закономерности.

Эколого-геохимические исследования геоэкотона: снег на льду — лед — подледная вода на акватории оз. Байкал, выявили особенности химического состава и некоторые закономерности миграции макро- и микроэлементов. Интерпретация полученного материала на акватории озера проведена в рамках системы: снег на льду — лед — подледная вода. Интенсивность вовлечения в лед растворенных веществ вместе с льдообразующей водой характеризуется коэффициентом вовлечения (Кв) [9]. Расчеты показали, что его величина лежит в широких пределах, но, как правило, меньше 1. Данный коэффициент отражает специфичность распределения веществ между льдом и водой. Обнаружено, что если концентрация солей в замерзающем растворе далека от насыщающей, то их содержание во льду намного ниже исходной (табл. 1). Причем Кв минерализации льда и минерализации воды колеблется в пределах 7-19 %.

Для характеристики интенсивности вовлечения в лед растворенных веществ вместе с льдообразующей водой был использован коэффициент вовлечения (K_B). Установлено, что для каждого иона значение K_B индивидуально, но при этом прослеживаются общие закономерности: среди анионов в наибольшей степени вовлекаются хлорид-ионы. На основании расчетов коэффициента водной миграции (K_X) химические элементы по интенсивности миграции четко разделились на две группы — с очень сильной и слабой и очень слабой. В ледовом покрове концентрация элементов имеет более низкие показатели по сравнению со снегом и подледной водой.

Проведен анализ эколого-геохимической обстановки территории и основных водотоков югозападного побережья оз. Байкал в пределах населенного пункта. Обследования речных вод,
выполненные в последние годы, показали, что произошли качественные и количественные изменения
в ионом составе. Так, повысилась доля сульфат-иона (почти в 3 раза) и снизилось содержание
гидрокарбоната и кальция. Выявлено увеличение содержания хлора (на порядок), а также
показателей рН (почти на единицу). Рост концентрации сульфат-иона, по-видимому, обусловлен
проникновением воздушных масс северо-западного переноса по долине Ангары. Увеличение
концентрации диоксида серы в атмосфере вследствие загрязнения ее промышленными выбросами
приводит к росту содержания сульфатов в атмосферных осадках, что влечет за собой изменения в
соотношении главных ионов — уменьшение гидрокарбонат-иона, кальция и повышение сульфат- и
хлорид-ионов. Поскольку горная местность и крутые, каменистые склоны служат препятствием для
активного хозяйственного использования всей территории, масштабы техногенного преобразования
сравнительно невелики и большей частью коснулись самого побережья и предгорной части территории.

Выводы

На основании применения географо-экологического подхода разработана методика оценки экологического состояния окружающей среды урбанизированных территорий.

Проведены эколого-геохимические исследования геоэкотона: снег на льду – лед – подледная вода на акватории оз. Байкал.

Таблица 1. Химический состав снега, льда и подледной воды оз. Байкал, мг/л

№ точки	Наименование	HCO ₃	SO ₄ ²⁻	Cl	Na⁺	K [†]	Ca ²⁺	Mg ²⁺	Минерализация
2	Снег на льду	2.62	0.88	1.70	1.74	0.58	1.90	0.36	9.78
	Лед	9.09	1.00	1.70	2.46	0.98	2.01	0.46	17.70
	Вода	64.72	1.20	3.90	4.88	1.30	14.93	3.67	94.60
5	Снег на льду	3.23	1.18	4.62	3.36	0.26	3.51	0.66	16.82
	Лед	1.05	0.88	1.70	3.12	0.74	6.15	2.02	15.66
10	Снег на льду	1.22	0.95	1.60	0.38	0.10	1.38	0.29	5.92
	Лед	1.34	0.95	1.70	1.44	0.51	0.78	0.26	6.98
	Вода	64.05	1.20	1.78	3.29	0.74	14.62	3.89	89.57
14	Снег на льду	2.14	0.88	1.78	0.78	0.10	1.33	0.33	7.34
	Лед	1.65	0.88	1.99	1.85	0.80	0.92	0.25	8.34
	Вода	65.58	1.18	1.60	3.66	0.92	17.79	3.83	94.56
16	Снег на льду	1.22	0.95	1.99	1.04	0.11	1.16	0.30	6.77
	Лед	1.65	0.55	1.99	1.04	0.42	1.08	0.30	7.03
18	Снег на льду	1.28	0.95	1.99	0.27	0.08	1.31	0.31	6.19
	Лед	1.31	0.82	1.85	0.70	0.21	0.72	0.21	5.82
	Вода	64.54	1.20	1.85	2.66	0.54	13.22	3.25	87.26
35	Снег на льду	1.53	0.95	1.78	0.88	0.12	1.87	0.51	7.64
	Лед	2.14	0.77	1.95	2.36	1.06	2.15	0.74	11.17

Исследования эколого-геохимической обстановки территории и основных водотоков юго-западного побережья оз. Байкал в пределах населенного пункта обнаружили качественные и количественные изменения в ионом составе.

Література

- 1. Щукин И.С. Четырёхъязычный энциклопедический словарь терминов по физической географии / Щукин И.С. М.: Сов. энциклопедия, 1980. С. 467.
- 2. Бобра Т.В. Геоэкотоны в структуре ландшафтного пространства / Т.В. Бобра // Геополитика и экогеодинамика регионов. Симферополь: ТНУ, 2008. Т. 4. Вып. 1-2. С. 28-31.
- 3. Бобра Т.В. Новые объекты ландшафтных исследований / Т.В. Бобра // Геополитика и экогеодинамика регионов. Симферополь: ТНУ, 2009. Т. 5. Вып. 1. С. 20-32.
- 4. Сочава В. Б. Введение в учение о геосистемах / Сочава В. Б. Новосибирск: Наука, Сибирское отделение, 1978. 319 с.
- 5. Экотоны в биосфере / [под редакцией д.г.н., проф. В.С.Залетаева]. M.: PACXH. 1997. 329 с.
- 6. Миханков Ю.М. Деятельный подход к региональной географической экспертизе / Ю. М. Миханков, В. М. Разумовский // География и современность: межвуз. сб. М.-Л., 1990. Вып. 5. С. 77-86.
- 7. Геоэкологические основы территориального проектирования и планирования / [отв. ред. В. С. Преображенский, Т. Д. Александрова]. М. : Наука, 1989. 114 с.
- 8. Геоэкологическое картографирование: учеб. пособие для студ. высш. учеб. заведений / [под ред. Б.И. Кочуроваъ. М. : Издательский центр «Академия», 2009. 192 с.
- 9. Иванов А. В. Гидрохимические процессы при наледеобразовании / Иванов А. В. Владивосток: Изд-во ИВЭП ДВО РАН, 1983. 106 с.

Анотація. І. Б. Воробьова **Підходи і методи при геоекологічного оцінки територій.** У статті розглянуті підходи та методи вивчення геоекотонов при геоекологічної оцінки територій. З використанням географоекологічного підходу розроблено методику оцінки екологічного стану довкілля урбанізованих терри-торій. Проведено еколого-геохімічні дослідження геоекотона: сніг на льоду - лід - підлідна вода на акваторії оз. Байкал.

Ключевые слова: геоекотон, ландшафтний підхід, динамічний підхід, географо-екологічний підхід

Abstract. I. B. Vorobieva **Approaches and methods in environmental assessment areas.** The article describes the approaches and methods of studying geoekotonov in geo-ecological assessment areas. Using geographical and ecological approach, the method estimates the ecological environment in urban areas. Conducted ecological and geochemical studies geoekotona: snow on the ice – ice – Ice water in the water area of the lake. Baikal. **Keywords:** geoekoton. landscape approach, dynamic approach, geographical and ecological approach.

Поступила в редакцию 31.01.2014 г.